Project Report FY13 Suwannee River water Management LiDAR Area 4 Florida State Plane North #### Prepared For: United States Geological Survey Prepared By: Digital Aerial Solutions, LLC CONTRACT: #G10PC00093 CONTRACTOR: DIGITAL AERIAL SOLUTIONS TASK ORDER: #G13PD00141 # Project Report LiDAR Collection, Processing, and QA/QC #### 2013 Suwannee Management LiDAR Task Order G13PD00141 Prepared For: US Geological Survey 1400 Independence Road Rolla, MO 65401 Phone: (573) 308-3587 Prepared By: Digital Aerial Solutions, LLC 8409 Laurel Fair Circle, Suite 100 Tampa, FL 33610 Phone: (813) 628-0788 FY13 Suwannee Management Area 4 LiDAR #### **Table of Contents** | 1 Introduction and Specifications | 5 | |--|----| | 2 Spatial Reference System | 5 | | 3 LiDAR Acquisition | 6 | | 3.1 Survey Area | 6 | | 3.2 Acquisition Parameters | 7 | | 3.3 Acquisition Mission | 8 | | 3.4 Airborne GPS | 8 | | 4 LiDAR Processing | 9 | | 4.1 Acquisition Post-Processing | 9 | | 4.2 Geometric Calibration | 9 | | 4.3 Point Cloud Classification | 10 | | 4.4 Breakline Collection | 11 | | 4.5 DEM Generation | 11 | | 5 Quality Control | 11 | | 5.1 Point Clouds | 11 | | 5.2 Breaklines | 12 | | 5.3 Digital Elevation Models | 12 | | Appendices | 13 | | Appendix A. Flight Log | 14 | | Appendix B. Vertical Accuracy Calculations | 16 | #### 1 Introduction and Specifications Digital Aerial Solutions, LLC (DAS) was tasked to collect and process a <u>Light Detection And Ranging</u> (LiDAR) derived elevation dataset for the Suwannee Management, FL. The FY13 Suwannee Management survey area4 encompasses approximately 160 square miles. Aerial LiDAR data was collected utilizing an ALS60. The ALS60 is a discrete return topographic LiDAR mapping system manufactured by Leica Geosystems. LiDAR data collected for the Suwannee Management survey has a nominal pulse spacing of 0.9 meters, and includes up to 4 discrete returns per pulse, along with intensity values for each return. LiDAR datasets were post processed to generate elevation point cloud swaths for each flight line. Deliverables include the point cloud swaths, tiled point clouds classified by land cover type, breaklines to support hydro-flattening of digital elevation models (DEM)s, and bare-earth DEM tiles. Point cloud deliverables are stored in the LAS version 1.2 format, point data record format 1. The tiling scheme for tiled deliverables is a 4900 Feet x 4900 Feet grid. All deliverables were generated in conformance with the U.S. Geological Survey National Geospatial Program Guidelines and Base Specifications, Version 1. #### 2 Spatial Reference System The spatial reference of the data is as follows. Horizontal Spatial Reference - Datum: North American Datum of 1983 (National Spatial Reference System 2007) - Coordinates: State Plane Florida North **Vertical Spatial Reference** All datasets are available with orthometric elevation; point cloud datasets are also available with ellipsoid heights - Datum: North American Vertical Datum of 1988 (GEOID09) #### 3 LiDAR Acquisition #### 3.1 Survey Area The FY13 Suwannee Management Area 4 survey covers approximately 160 square miles located in north central Florida. The flight plan consisted of 39 survey lines and 1 control lines. #### 3.2 Acquisition Parameters Acquisition parameters include the sensor configuration and the flight plan characteristics, and are selected based on a number of project specific criteria. Criteria reviewed include the required accuracies for the final dataset, the land cover types within the project survey area, and the required nominal pulse spacing. Acquisition parameters selected for the FY 13 Suwannee River water Management Area 4 LiDAR project are summarized below. | Parameter | Value | |----------------------------------|-------------| | Flying Height Above Ground Level | 5,575 feet | | Nominal Sidelap | 30% | | Nominal Speed Over Ground | 140 knots | | Field of View | 34° | | Laser Rate | 133 kHz | | Scan Rate | 64.3 hz | | Maximum Cross Track Spacing | 1.32 meters | | Maximum Along Track Spacing | 1.32 meters | | Average Spacing | .75 meters | #### 3.3 Acquisition Mission The acquisition mission for the FY 13 Suwannee River water Management Area 4 LiDAR survey was coordinated to be acquired in 1 week. Collection began on February 16th 2013 and was completed on February 17th, 2013, A complete flight log for the acquisition mission may be found in Appendix A. #### 3.4 Airborne GPS/IMU Airborne global positioning system (GPS) and inertial measurement unit (IMU) data was collected on the aircraft during the acquisition mission, providing sensor position and orientation information for georeferencing the LiDAR data. Airborne GPS observations were collected at a frequency of 2Hz, and IMU observations are collected at a frequency of 200Hz. | Aircraft | Sensor | GPS Lever Arm (m) | IMU Lever Arm (m) | |---------------|----------------|---------------------------------|---------------------------------| | C421 - N112MJ | ALS60 - SN6130 | x: -0.210, y: -0.060, z: -1.370 | x: -0.450, y: -0.159, z: -0.169 | In addition, GPS data was collected with ground base stations during the acquisition mission, providing corrections to support differential post-processing of the airborne GPS. One ground base station was setup at an NGS Benchmark (Keyport) as the base of operation. The additional ground base station were selected and place threw the project to ensure complete coverage. Ground GPS observations were collected at a frequency of 2Hz. #### 4 LiDAR Processing #### 4.1 Acquisition Post-Processing Once the acquisition was completed, initial post-processing was performed to generate geo-referenced LiDAR elevation point clouds. The airborne GPS dataset was differentially corrected using the ground base station GPS datasets collected by DAS in Lecia's IPAS software. IPAS computes the GPS dataset corrections in both forward and reverse chronological sequence, obtaining two solutions for the GPS trajectory. The differences between these two solutions were reviewed to ensure a consistent result, and agree within +/- 3cm. The forward and reverse solutions also show good fit between the two different base stations used in the post-processing. Differentially corrected airborne GPS data was merged with the airborne IMU dataset in Leica's IPAS software through Kalman filtering techniques. IPAS applies the reference lever arms for the GPS and IMU measurement systems during processing to determine the trajectory (position and orientation) of the LiDAR sensor during the acquisition mission. Estimated lever arm values reported posteriori validate the measurements made during sensor installation in the aircraft. Raw LiDAR sensor ranging data and the final sensor trajectory from IPAS were processed in Leica's ALSPP software to produce the LiDAR elevation point cloud swaths for each flightline, stored in LAS version 1.2 file format. Quality control of the swath point clouds was performed to validate proper function of the sensor systems, full coverage of the project AOI, and point density consistent with the planned nominal pulse spacing. The LiDAR data collected for the Suwannee Management survey area2 passed these quality control checks. Swath point clouds were assigned a unique File Source ID within the LAS file format before further processing. Swath files for the FY 13 Suwannee River water Management Area 4 LiDAR project were numbered in chronological order of acquisition. #### 4.2 Geometric Calibration Geometric and positional accuracy of the LiDAR swath point clouds is highly dependent on accurate calibration of the various subsystems within the LiDAR sensor system. Sensor calibration parameters fall into two categories, one being those parameters proprietary to the manufacturer's sensor design, and the other being parameters common to most commercial airborne LiDAR sensors, the IMU to laser reference system alignment angles (bore-site), and mirror deformation constants (scaling). The manufacturer specific calibration parameters are applied in Leica's ALSPP software for the ALS60 sensor system. Terrasolid's Terramatch software was used to calculate the IMU bore-site and mirror scale parameters for the FY13 Suwannee Management's Area 4 LiDAR data. Within the TerraMatch software, the Tie-line workflow was used to solve for the parameters. The Tie-line workflow involves automated selection of numerous 'tie-lines', which represent a linear segment fit to the data that should have the same slope, azimuth, position and elevation, within the overlap sections of the survey lines and control lines. The tie-lines provide observations for algorithms within TerraMatch to solve for the boresite and mirror scale parameters for the lift. The Tie-line workflow is dependent upon well distributed tie-lines throughout the swath point clouds to effectively solve for bore-site and mirror scale parameters with the automated algorithms. The FY13 Suwannee Management survey Area 4 did not support this requirement, due to the large water area within the survey and control lines. Manual estimation of the bore-site and mirror scale parameters was performed using the observed tie-lines in overlap areas. The final step of geometric calibration is to determine elevation (z) offset corrections to be applied to the swath point clouds. Z values calculated during the course of the acquisition mission can vary at the centimeter level as the GPS satellite constellation observed in the survey area changes with satellites moving through their orbits over the course of the mission. Baseline length from the ground base station GPS to the airborne GPS can also impact the z values calculated for the swath point clouds. Z offset corrections are calculated in two steps; a relative step, where individual lines are corrected one to another using the adjusted tie-lines from the bore-site and mirror scale calculation step; and an absolute step, where groups of lines are leveled to project ground control. For the FY 13 Suwannee River water Management Area 4 LiDAR project, the control lines were used to determine relative z offset corrections in areas of discernible ground. The base station operated by DAS in the survey area provided for minimal baseline lengths, resulting in generally good z agreement between the survey lines and control lines. The final geometrically calibrated swath point clouds were compared to the bare-earth profile survey data. The data fit the profile surveys within the vertical accuracy tolerance specified for the project. Full documentation of the vertical accuracy checks maybe found in section 5.1. #### 4.3 Point Cloud Classification Georeference information was applied to the swath point could LAS files. Geometrically calibrated swath point clouds were cut into 4900 feet x 4900 feet LAS format tiles for point cloud classification and derived product creation. It is important to note that US National Grid tiles are non- orthogonal when stored and displayed in a geographic coordinate system. As a result, tiled vector data does not have overlap, but tiled raster data does have overlap to permit seamless display of the data products. Tiled point cloud data was processed in Terrasolid's Terrascan software to assign initial classification values. The Terrascan software provides a number of routines to algorithmically detect and assign points to their appropriate class. Points left unclassified by the algorithmic routine remain as Class 1 – Processed, but unclassified. Automated classification routines assigned points to one of the following classes: - Class 1 Processed, but unclassified - Class 2 Bare-earth ground - Class 7 Noise - o Class 9 Water - Class 10 Ignored Ground - o Class 11 Withheld - Class 17 Reserve - o Class 18 Reserve Automated classification results were reviewed for each tiled point cloud, and manual edits made where necessary to correct for misclassified points. Points remaining in Class 1 after the automated classification routines were run were left in Class 1. Points falling outside of a 105 meter buffer of the project AOI polygon were excluded from the tiled point clouds. #### 4.4 Breakline Collection Manual breakline collection was performed to support the hydro-flattening requirements of the project's DEM deliverables. Breaklines were collected directly from the classified point clouds and from triangulated irregular network (TIN) surface models built from the classified point clouds, in Terrasolids's Terrascan and Terramodeler software. Breakline features were collected as design file elements in Bentley's Microstation software. Breaklines were converted to ESRI 3D shapefile format for the breakline deliverable, and tiled to the project US National Grid index. The data collected for the Suwannee Management LiDAR area 2 survey maintained significant point density in the water, marsh, and swamp, limiting the usefulness of point density as guiding factor in breakline placement. Points classified as Class 2 – Bare-earth ground, falling within a one meter buffer of the collected breaklines, were reassigned to Class 10 – Ignored Ground. These points are excluded from the surface model during DEM generation to preserve the hydro-flattening characteristics of the breaklines. #### 4.5 DEM Generation The final classified point clouds and collected breaklines were reviewed for completeness and conformance to the task order scope of work and the NGP version 13 guidelines. Within the Terramodeler software, points in Class 2 – Bare-earth ground and the breaklines were combined to generate TIN elevation models for each tile, from which the bare-earth DEM tiles were interpolated and exported as 32 bit float Arc Grid. #### 5 Quality Control #### 5.1 Point Clouds Accuracy and completeness of the LiDAR point clouds directly impacts the quality of all other LiDAR derived products. Ensuring a quality LiDAR dataset begins with proper mission planning and execution. Ground GPS base stations are located such that GPS baselines between the ground and airborne receivers do not exceed 30km. For the Suwannee Management LiDAR project, two base stations were run to meet this requirement, one at the field operations airport and one within the survey area. Static alignment is performed both before take-off and after landing to allow for GPS integer ambiguity resolution. Sensor operators carefully monitor the LiDAR unit and its various subsystems during the acquisition mission to ensure proper function. Airborne GPS positional dilution of precision (PDOP) estimates are monitored to ensure they remain less than 3.The optical system is monitored to ensure there are no ranging errors encountered during the flight lines. During acquisition post-processing estimates of the trajectory data accuracy are reviewed to ensure they will support the required accuracies of the point cloud data. The trajectory accuracy is a function of the differentially corrected GPS data and the IMU data. The raw swath point clouds generated from ALSPP are reviewed as another check for proper sensor function. The point clouds are reviewed for full coverage of the AOI, required point density and nominal pulse spacing, clustering, proper intensity values, full swath coverage within the planned field of view, and planned survey line overlap. Geometric calibration quality control validates that the positional accuracy requirements of the project are met, and includes relative accuracy assessments for intra-swath (within) and inter-swath (between) accuracy, along with absolute accuracy assessments against project ground control. Relative vertical accuracy assessments are normally made using the tie-lines generated in the Terramatch software, as these lines provide positional observations throughout the extent of individual swaths, and between neighboring swaths. Horizontal accuracy assessments of LiDAR data require the presence of vertical targets such as buildings within in the survey area. Field check points are surveyed at the corners of the building roofs, and the surveyed locations compared to the estimated corner locations in the LiDAR point cloud. The FY 13 Suwannee Management survey Area 4 did not present any accessible buildings for use as vertical targets. From the manufacturer's specifications, the estimated horizontal accuracy at one sigma, based on flying height for the project, is between 10cm and 20cm. Absolute vertical accuracy assessments for the point cloud data are made against ground check point data. For the FY13 Suwannee Management Area 4 survey, ground check point data consisted of the ground GPS base station and real-time kinematic (RTK) GPS techniques. Check point locations were collected at 1 – second intervals during the RTK survey. Points collected during the static pre-initialization and post-initialization were removed from the assessment so as not to bias the assessment. Local TIN models of the elevation points are built around each ground check points. The tin model elevation is sampled at the horizontal position of the ground check point. The TIN model elevation and ground check point survey elevation values were used to calculate the fundamental vertical accuracy (FVA) of the swath point clouds as described in NDEP Elevation Guidelines Version 1. The raw swath FVA of the TIN tested RMSEz 0.291 feet and 0.570 feet at the 95% confidence level in open terrain. Bare earth FVA of the DEM tested at an RMSEz of 0.173 and 0.344 meters at the 95% confidence level in open terrain. The full calculations for all check points can be found in Appendix B. Raw Swath FVA of TIN | Maw Owatii i vi | Itaw Gwatii i vit oi iiiv | | | | | | | | | | |-----------------|---------------------------|------|--|--|--|--|--|--|--|--| | $RMSE_{Z} =$ | 0.291 | feet | | | | | | | | | | NSSDA= | 0.570 | feet | | | | | | | | | #### Bare Earth FVA of DEM | 20110 2011011 17 | | | |------------------|-------|------| | $RMSE_{Z} =$ | 0.173 | feet | | NSSDA= | 0.344 | feet | The tiled point cloud products were reviewed for full coverage of the AOI and proper classification. As part of the QC process, TINs are built in the Terramodeler software for each tile using the ground class and the hydro-flattening breaklines. The TINs are reviewed for non-ground features, and edited where necessary to remove any remaining non-ground features. Points were also reviewed for absolute elevation, and points falling below the selected orthometric elevation for water were removed from the ground class. #### 5.2 Breaklines The final breaklines in ESRI 3D shapefile format were reviewed for topological consistency and correct elevation. Breaklines features are continuous and do not have overlaps or dangles. #### 5.3 Digital Elevation Models Digital elevation models (DEMs) were reviewed for conformance with the SOW and the NGP version 1 guidelines. DEM files were loaded in the Global Mapper software and inspected visually for edge matching between tiles, void areas within the project AOI, and proper coding of the NODATA values. DEM file naming was verified for consistency with the US National Grid tile index. Appendix A. Flight Logs | | DAS
Digital Aertal Sol | bitom | | | | | | | | | | | | |---------------|---|---------------|------|-------------|-----------------------|------------|----------------|-----------------------|-------|----------|--------------------|------------|---------------------------| | ALS60 Li | DAR FI | ight Log | | | | | | | | | | | | | | | annee 2013 | 8 | ALS60 | N6130_090724 | | | 38 | | S() | 2 33 | S | ensor Operator/s | | Project | A14000000000000000000000000000000000000 | | | | | | | 6 | | 3 197 | | | Bertin Evina-Ze | | Date/Julian: | 2/16/2013 | Cross City | | n. | 1em Drive MM60 | Int. Time: | 100000 | and the second second | | | Base PID: | | Pilot/s | | lobbs End | 688.5 | | | | 6-600110120 | | 95 | 40 | | | DG4685 | - 41 | MWAZ | | lobbs ST | 684.4 | | | | LIFT A | -↓ | | AGL (ft): | | Plan(s): | Base Height: | | Airport Idnt: | | light Time | 4.1 | | што | Parameter (| | | 5, | 575 | В | lock 4 | 1.500
tion Acc. | 421C 112MJ | KCTY | | Lift | Flight
Line | Mission Line | | time: | GPS Altitude:
ASL: | Direction | Speed:
kts: | Memory | S/Vs: | POOP | HDOP | Comn | nents and Conditions: | | Block 4 | 2,110 | | B: | E: | | 200 | | 62 | | | 11001 | | Statio Alignment | | IUCK 4 | 1 | 130217 013928 | 1:39 | 1:42 | 5,570 | 180 | 134 | 61 | 19 | 1.2 | 0.6 | | Static Alignment
CLEAR | | | 2 | 130217_013928 | 1:46 | 1:50 | 5,570 | 0 | 135 | 60 | 19 | 1.2 | 0.6 | | CLEAR | | - | 3 | 130217_014612 | 1:46 | 1:57 | 5,570 | 180 | 138 | 59 | 19 | 1.1 | 0.6 | | CLEAR | | | 4 | 130217_015305 | 2:00 | 2:04 | 5,570 | 0 | 135 | 58 | 19 | 1.1 | 0.6 | | CLEAR | | - | 5 | 130217_020018 | 2:07 | 2:12 | 5,570 | 180 | 142 | 57 | 19 | 1.1 | 0.6 | | CLEAR | | | 6 | 130217_020744 | 2:16 | 2:12 | 5,570 | 0 | 134 | 56 | 19 | 1.0 | 0.6 | | CLEAR | | \rightarrow | 7 | 130217_021638 | 2:25 | 2:30 | 5,570 | 180 | 137 | 55 | 20 | 1.0 | 0.6 | | CLEAR | | | 8 | 130217_022516 | 2:34 | 2:40 | 5,570 | 0 | 132 | 54 | 17 | 1.1 | 0.6 | | CLEAR | | - | 9 | 130217_023455 | 2:43 | 2:50 | 5,570 | 180 | 140 | 52 | 16 | 1.1 | 0.6 | | CLEAR | | | 10 | 130217_024338 | 2:54 | 3:01 | 5,570 | 0 | 131 | 50 | 17 | 1.2 | 0.7 | | CLEAR | | - | 11 | 130217_023420 | 3:04 | 3:10 | 5,570 | 180 | 141 | 49 | 18 | 1.0 | 0.6 | | CLEAR | | | 12 | 130217_030407 | 3:14 | 3:19 | 5,570 | 0 | 127 | 47 | 17 | 1.1 | 0.6 | | CLEAR | | | 13 | 130217_031417 | 3:22 | 3:27 | 5,570 | 180 | 138 | 46 | 18 | 1.1 | 0.6 | | CLEAR | | | 14 | 130217_032231 | 3:32 | 3:38 | 5,570 | 0 | 128 | 45 | 17 | 1.1 | 0.6 | | CLEAR | | | 15 | 130217_033237 | 3:41 | 3:47 | 5,570 | 180 | 141 | 43 | 18 | 1.1 | 0.6 | | CLEAR | | | 16 | 130217_035130 | 3:51 | 3:57 | 5,570 | 0 | 128 | 42 | 16 | 1.3 | 0.7 | | CLEAR | | | 17 | 130217_033130 | 4:00 | 4:06 | 5,570 | 180 | 138 | 40 | 17 | 1.2 | 0.6 | | CLEAR | | | 18 | 130217_040039 | 4:10 | 4:16 | 5,570 | 0 | 126 | 39 | 16 | 1.2 | 0.7 | | CLEAR | | | 19 | 130217_041941 | 4:19 | 4:25 | 5,570 | 180 | 138 | 38 | 16 | 1.2 | 0.6 | | CLEAR | | | 20 | 130217_041933 | 4:29 | 4:35 | 5,570 | 0 | 128 | 36 | 16 | 1.2 | 0.6 | | CLEAR | | | 21 | 130217_043816 | 4:38 | 4:44 | 5,570 | 180 | 143 | 34 | 15 | 1.2 | 0.7 | | CLEAR | | | 22 | 130217_044817 | 4:48 | 4:54 | 5,570 | 0 | 128 | 33 | 17 | 1.1 | 0.6 | | CLEAR | | | 40 | 130217_050056 | 5:00 | 5:07 | 5,570 | 270 | 127 | 31 | 15 | 1.2 | 0.7 | | X-STRIP | | | 40 | 130217 051044 | 5:10 | 5:15 | 5,570 | 90 | 140 | 30 | 15 | 1.2 | 0.7 | | X-STRIP | | | DAS
Digital Aerial Sol | | | | | | | | | | | | | |------------|---------------------------|---------------|-------|-------|-----------------------|------------|----------------|-----------|-------|------------|--------------------|--------------------|-----------------------| | ALS60 L | iDAR FI | ight Log | | | | | | | | | | | | | roject | Sing | annee 2013 | 3 (| ALS60 | N6130_090724 | 3 | | | | | | ' - | Sensor Operator/s | | | | | | | | | | | | 15 | | | Bertin Evina-Ze | | ate/Julian | | Cross City | | N | 1em Drive MM60 | Int. Time: | TOWARD WATER | | | | Base PID: | | Pilot/s | | lobbs End | 691.2 | | | | 2-600059224 | | | 40 | | | DG4685 | | MWAZ | | lobbs ST | 688.5 | | 15 3 | | LIFT A | | | AGL (ft): | 3.00 | t Plan(s): | Base Height: | - 1/0 processor (N | Airport Idnt:
KCTY | | light Time | | | HTC | time: | | | | 575 | В | lock 4 | 1.500
tion Acc. | 421C 112MJ | KUIY | | Lift | Flight
Line | Mission Line | B: | E: | GPS Altitude:
ASL: | Direction | Speed:
kts: | Memory | S/Vs: | PDOP | HDOP | Com | ments and Conditions: | | Block 4 | 0 | | | | | 3 12 | - 2 | 139 | 33 | | | | Static Alignment | | | 23 | 130217_150154 | 15:01 | 15:05 | 5,540 | 0 | 123 | 137 | 14 | 1.3 | 0.8 | | CLEAR | | - 6 | 24 | 130217_150947 | 15:09 | 15:13 | 5,540 | 180 | 139 | 137 | 15 | 1.3 | 0.7 | | CLEAR | | | 25 | 130217_151759 | 15:17 | 15:21 | 5,540 | 0 | 126 | 136 | 15 | 1.4 | 0.7 | | CLEAR | | | 26 | 130217_152608 | 15:26 | 15:29 | 5,540 | 180 | 140 | 135 | 16 | 1.2 | 0.7 | | CLEAR | | | 27 | 130217_153332 | 15:33 | 15:37 | 5,540 | 0 | 125 | 134 | 17 | 1.2 | 0.7 | | CLEAR | | | 28 | 130217_154105 | 15:41 | 15:44 | 5,540 | 180 | 138 | 133 | 17 | 1.2 | 0.7 | | CLEAR | | | 29 | 130217_154831 | 15:48 | 15:52 | 5,540 | 0 | 125 | 132 | 16 | 1.4 | 0.7 | | CLEAR | | 0. | 30 | 130217_155549 | 15:55 | 15:59 | 5,540 | 180 | 132 | 131 | 15 | 1.6 | 0.7 | | CLEAR | | | 31 | 130217_160346 | 16:03 | 16:07 | 5,540 | 0 | 127 | 130 | 16 | 1.3 | 0.6 | | CLEAR | | 0. | 32 | 130217_161017 | 16:10 | 16:13 | 5,540 | 180 | 133 | 129 | 16 | 1.3 | 0.6 | | CLEAR | | | 33 | 130217_161754 | 16:17 | 16:21 | 5,540 | 0 | 127 | 128 | 18 | 1.1 | 0.6 | | CLEAR | | (5) | 34 | 130217_162452 | 16:24 | 16:28 | 5,540 | 180 | 132 | 127 | 17 | 1.2 | 0.6 | | CLEAR | | | 35 | 130217_163204 | 16:32 | 13:36 | 5,540 | 0 | 129 | 126 | 18 | 1.2 | 0.6 | | CLEAR | | 6 | 36 | 130217_163817 | 16:38 | 16:41 | 5,540 | 180 | 136 | 126 | 18 | 1.1 | 0.6 | | CLEAR | | | 37 | 130217_164534 | 16:45 | 16:48 | 5,540 | 0 | 134 | 125 | 18 | 1.1 | 0.6 | | CLEAR | | (5) | 38 | 130217_165138 | 16:51 | 16:54 | 5,540 | 180 | 135 | 124 | 18 | 1.1 | 0.6 | | CLEAR | | | 39 | 130217_165826 | 16:58 | 17:01 | 5,540 | 0 | 135 | 123 | 17 | 1.1 | 0.6 | | CLEAR | | (5) | 40 | 130217_170533 | 17:05 | 17:09 | 5,540 | 270 | 139 | 122 | 17 | 1.1 | 0.6 | | X-STRIP | | | 40 | 130217_171257 | 17:12 | 17:17 | 5,540 | 90 | 133 | 121 | 15 | 1.3 | 0.7 | | X-STRIP | | Appendix B. Vertical Accuracy Calculations | |--| | Appendix B. Vertical Accuracy Calculations | | | | | ### LiDAR Accuracy Assessment Summary | LC Type | # of Points | FVA | SVA | CVA | |----------------|-------------|-------|-------|-------| | Classified LAS | | | | | | ALL | 41 | | | 0.685 | | FVA | 12 | 0.295 | | | | Tallweeds | 7 | | 0.649 | | | Brushland | 7 | | 0.813 | | | Forested | 15 | | 0.748 | | | Total | 41 | | | | | Bare Earth DEM | | | | | | ALL | 41 | | | 0.744 | | FVA | 12 | 0.344 | | | | Tallweeds | 7 | | 0.708 | | | Brushland | 7 | | 0.826 | | | Forested | 15 | | 0.780 | | | Total | 41 | | | | Units: Feet ### Coordinates and Offsets of Analyzed Locations | ID | | | | | | |-----|------------|-------------|------------|--------|---------| | | Survey X | Survey Y | Z 1 | Z DEM | Z LAS | | | • | | AZ DEM | ΔZ LAS | LC Type | | 104 | | | | | | | | 331707.437 | 3293074.322 | 24.063 | 24.002 | 24.002 | | | | | -0.061 | -0.061 | FVA | | 120 | | _1 | | | | | | 331708.913 | 3298962.259 | 17.881 | 17.843 | 17.858 | | | | | -0.038 | -0.023 | FVA | | 121 | | | | | | | | 331734.608 | 3299031.122 | 17.842 | 17.802 | 17.801 | | | | | -0.04 | -0.041 | FVA | | 131 | L | | | | | | | 326781.658 | 3296620.34 | 21.681 | 21.79 | 21.791 | | | | | 0.109 | 0.11 | FVA | | 132 | I | | | | | | | 326753.239 | 3296611.309 | 22.332 | 22.406 | 22.384 | | | | | 0.074 | 0.052 | FVA | | 136 | I | | | | | | | 318897.697 | 3292562.868 | 19.53 | 19.529 | 19.527 | | | | | -0.001 | -0.003 | FVA | | 146 | | | | I | | | | 316499.541 | 3286314.997 | 15.244 | 15.185 | 15.232 | | | | | -0.059 | -0.012 | FVA | | | | | | | | | | ID | | | | | | |----------|-----|------------|-------------|--------|--------|-----------| | | | Survey X | Survey Y | Z1 | Z DEM | Z LAS | | | | | | AZ DEM | ΔZ LAS | LC Type | | V | 150 | | | | | | | | | 316702.046 | 3286307.599 | 15.49 | 15.464 | 15.463 | | | | | | -0.026 | -0.027 | FVA | | v | 157 | | | | | | | | | 319568.321 | 3301756.52 | 14.559 | 14.571 | 14.565 | | | | | | 0.012 | 0.006 | FVA | | V | 168 | | | | | | | | | 319596.311 | 3301915.184 | 14.784 | 14.771 | 14.762 | | | | | | -0.013 | -0.022 | FVA | | V | 169 | 1 | | | | | | | | 321296.214 | 3308144.044 | 14.615 | 14.676 | 14.647 | | | | | | 0.061 | 0.032 | FVA | | v | 170 | 1 | | | 1 | 1 | | | | 321290.207 | 3308120.634 | 13.826 | 13.784 | 13.778 | | | | | | -0.042 | -0.048 | FVA | | v | 105 | - | | | -1 | | | | | 331674.361 | 3292593.78 | 19.132 | 19.323 | 19.341 | | | | | | 0.191 | 0.209 | Tallweeds | | ~ | 125 | | | | | | | | | 326784.175 | 3296622.373 | 21.706 | 21.674 | 21.683 | | | | | | -0.032 | -0.023 | Tallweeds | | | ID | | | | | | |----|-------------|------------|-------------|------------|--------|-----------| | | | Survey X | Survey Y | Z 1 | Z DEM | Z LAS | | | | • | | AZ DEM | ΔZ LAS | LC Type | | Ŀ | 137 | | | | | | | | | 319241.742 | 3292767.558 | 20.104 | 20.186 | 20.182 | | | | | | 0.082 | 0.078 | Tallweeds | | Ī. | 154 | | | | I | | | | | 316650.731 | 3286243.955 | 14.726 | 14.953 | 14.899 | | | | | | 0.227 | 0.173 | Tallweeds | | Ī. | 165 | L | I | | - I | | | | | 319564.101 | 3301758.559 | 14.539 | 14.587 | 14.601 | | | | | | 0.048 | 0.062 | Tallweeds | | Ŀ | 174 | | | | | | | | | 321302.129 | 3308095.609 | 12.895 | 12.984 | 12.956 | | | | | | 0.089 | 0.061 | Tallweeds | | Ŀ | 1 81 | | | | | | | | | 326067.328 | 3307780.207 | 22.848 | 22.918 | 22.905 | | | | | | 0.07 | 0.057 | Tallweeds | | Ŀ | 108 | L | | | I | <u> </u> | | | | 331655.842 | 3292559.226 | 18.639 | 18.92 | 18.925 | | | | | | 0.281 | 0.286 | Brushland | | Ŀ | 128 | 1 | | | 1 | | | | | 326756.168 | 3296592.381 | 22.297 | 22.253 | 22.26 | | | | | | -0.044 | -0.037 | Brushland | | | ID | | | | | | |-------------|----------|------------|-------------|------------|--------|-----------| | | | Survey X | Survey Y | Z 1 | Z DEM | Z LAS | | | | • | • | AZ DEM | ΔZ LAS | LC Type | | > | 143 | | | | | | | | | 319356.166 | 3292869.402 | 19.531 | 19.506 | 19.501 | | | | | | -0.025 | -0.03 | Brushland | | ~ | 151 | | | | | | | | | 316650.663 | 3286256.856 | 14.781 | 14.941 | 14.942 | | | | | | 0.16 | 0.161 | Brushland | | V | 162 | 1 | 1 | | | 1 | | | | 319566.794 | 3301689.817 | 15.474 | 15.659 | 15.601 | | | | | | 0.185 | 0.127 | Brushland | | V | 171 | | | | | | | | | 321268.104 | 3308118.825 | 13.418 | 13.3 | 13.308 | | | | | | -0.118 | -0.11 | Brushland | | V | 184 | 1 | 1 | | | 1 | | | | 326045.258 | 3307786.927 | 22.765 | 22.842 | 22.833 | | | | | | 0.077 | 0.068 | Brushland | | V | 1092 | <u>'</u> | • | | | • | | | | 321386.857 | 3308186.622 | 16.045 | 15.986 | 15.982 | | | | | | -0.059 | -0.063 | Forested | | V | 1096 | 1 | 1 | | | 1 | | | | 321343.788 | 3308094.186 | 14.667 | 14.682 | 14.665 | | | | | | 0.015 | -0.002 | Forested | | | <u>I</u> | | 1 | <u>I</u> | | l . | | | ID | Survey X | Survey Y | Z 1 | Z DEM | Z LAS | |----------|------|------------|-------------|------------|--------|----------| | | | Duivey A | Durvey 1 | AZ DEM | ΔZ LAS | LC Type | | ~ | 1099 | | | | | | | | | 326078.417 | 3307842.51 | 22.142 | 22.192 | 22.187 | | | | | | 0.05 | 0.045 | Forested | | / | 1103 | | | | | | | | | 326034.735 | 3307772.992 | 22.735 | 22.725 | 22.745 | | | | | | -0.01 | 0.01 | Forested | | ~ | 1105 | 1 | | | | | | | | 326067.135 | 3307733.696 | 22.691 | 22.721 | 22.72 | | | | | | 0.03 | 0.029 | Forested | | V | 1121 | 1 | | | | 1 | | | | 331678.689 | 3299017.844 | 16.483 | 16.555 | 16.554 | | | | | | 0.072 | 0.071 | Forested | | ~ | 1124 | 1 | | | | | | | | 331692.815 | 3299083.072 | 17.932 | 17.919 | 17.947 | | | | | | -0.013 | 0.015 | Forested | | V | 1125 | 1 | | | | | | | | 326805.348 | 3296563.303 | 21.91 | 22.066 | 22.077 | | | | | | 0.156 | 0.167 | Forested | | V | 1128 | | • | | | | | | | 326754.238 | 3296578.907 | 22.061 | 22.335 | 22.336 | | | | | | 0.274 | 0.275 | Forested | | | | • | | | • | | | | ID | CV | C | 71 | Z DEM | 7140 | |-------------|------|------------|-------------|--------|--------|----------| | | | Survey X | Survey Y | Z1 | | Z LAS | | | 1122 | | | AZ DEM | AZ LAS | LC Type | | > | 1132 | T | 1 | | | | | | | 319510.689 | 3301756.155 | 14.217 | 14.157 | 14.168 | | | | | | -0.06 | -0.049 | Forested | | V | 1135 | | | | L | | | | | 319609.869 | 3301765.695 | 14.977 | 15.073 | 15.072 | | | | | | 0.096 | 0.095 | Forested | | > | 1138 | I | 1 | | ı | | | | | 318686.214 | 3292491.31 | 19.859 | 19.983 | 19.963 | | | | | | 0.124 | 0.104 | Forested | | > | 1141 | ' | | | | I | | | | 318752.723 | 3292538.561 | 20.05 | 20.094 | 20.094 | | | | | | 0.044 | 0.044 | Forested | | > | 1143 | | | | | | | | | 316688.011 | 3286350 | 15.642 | 15.689 | 15.691 | | | | | | 0.047 | 0.049 | Forested | | > | 1147 | <u>'</u> | | | | | | | | 331740.023 | 3293515.728 | 21.018 | 21.241 | 21.226 | | | | | | 0.223 | 0.208 | Forested | ### Classified LAS Fundamental Vertical Accuracy LandCover Type: FVA Minimum DZ: -0.200 Maximum DZ: 0.360 Mean DZ: -0.009 Mean Magnitude DZ: 0.626 Number Observations: 12 Standard Deviation DZ: 0.157 RMSE Z: 0.151 95% Confidence Level Z: 0.295 Units: Feet ### Histogram Min: -0.061 Max: 0.11 Supplemental Vertical Accuracy LandCover Type: Tallweeds Minimum DZ: -0.075 Maximum DZ: 0.685 Mean DZ: 0.288 Mean Magnitude DZ: 1.010 Number Observations: 7 Standard Deviation DZ: 0.255 RMSE Z: 0.374 95th Percentile: 0.649 Units: Feet ### Histogram Min: -0.023 Max: 0.209 Supplemental Vertical Accuracy LandCover Type: Brushland Minimum DZ: -0.360 Maximum DZ: 0.398 Mean DZ: 0.216 Mean Magnitude DZ: 1.122 Number Observations: 7 Standard Deviation DZ: 0.449 RMSE Z: 0.469 95th Percentile: 0.813 Units: Feet # Histogram Min: -0.11 Max: 0.286 Supplemental Vertical Accuracy LandCover Type: Forested Minimum DZ: -0.213 Maximum DZ: 0.902 Mean DZ: 0.216 Mean Magnitude DZ: 0.938 Number Observations: 15 Standard Deviation DZ: 0.301 RMSE Z: 0.364 95th Percentile: 0.748 Units: Feet # Histogram Min: -0.063 Max: 0.275 Consolidated Vertical Accuracy LandCover Type: ALL Minimum DZ: -0.360 Maximum DZ: 0.938 Mean DZ: 0.164 Mean Magnitude DZ: 0.908 Number Observations: 41 Standard Deviation DZ: 0.305 RMSE Z: 0.341 95th Percentile: 0.685 Units: Feet ### Histogram Min: -0.11 Max: 0.286 ### **Bare Earth DEM** Fundamental Vertical Accuracy LandCover Type: FVA Minimum DZ: -0.200 Maximum DZ: 0.357 Mean DZ: -0.006 Mean Magnitude DZ: 0.692 Number Observations: 12 Standard Deviation DZ: 0.183 RMSE Z: 0.173 95% Confidence Level Z: 0.344 Units: Feet ### Histogram Min: -0.061 Max: 0.109 Supplemental Vertical Accuracy LandCover Type: Tallweeds Minimum DZ: -0.104 Maximum DZ: 0.744 Mean DZ: 0.314 Mean Magnitude DZ: 1.066 Number Observations: 7 Standard Deviation DZ: 0.285 RMSE Z: 0.413 95th Percentile: 0.708 Units: Feet ### Histogram Min: -0.032 Max: 0.227 Supplemental Vertical Accuracy LandCover Type: Brushland Minimum DZ: -0.387 Maximum DZ: 0.921 Mean DZ: 0.242 Mean Magnitude DZ: 1.171 Number Observations: 7 Standard Deviation DZ: 0.469 RMSE Z: 0.498 95th Percentile: 0.826 Units: Feet ### Histogram Min: -0.118 Max: 0.281 Supplemental Vertical Accuracy LandCover Type: Forested Minimum DZ: -0.196 Maximum DZ: 0.898 Mean DZ: 0.216 Mean Magnitude DZ: 0.954 Number Observations: 15 Standard Deviation DZ: 0.314 RMSE Z: 0.374 95th Percentile: 0.780 Units: Feet ### Histogram Min: -0.06 Max: 0.274 Consolidated Vertical Accuracy LandCover Type: ALL Minimum DZ: -0.387 Maximum DZ: 0.921 Mean DZ: 0.173 Mean Magnitude DZ: 0.951 Number Observations: 41 Standard Deviation DZ: 0.321 RMSE Z: 0.11 95th Percentile: 0.744 Units: Feet ### Histogram Min: -0.118 Max: 0.281